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1. Introduction

Supersymmetric gauge theories are more amenable to analysis than ordinary gauge theories

(see [2, 3] for reviews). Until recently, much of the attention in supersymmetric gauge

theories has been devoted to those with small numbers of flavors nf . This is because for

small nf exact results, such as effective superpotentials, can easily be guessed and verified

using some relatively simple consistency checks [4, 5]. This way of approaching the problem

cannot easily be extended to larger numbers of flavors. Instead, one can reverse the strategy

and start with the IR free regime of these theories where there are many massless flavors

and strong quantum effects are negligible. The strong quantum effects found in the lower-

flavor theories are obtained from higher-derivative F -terms of a special form in these IR

free theories upon integrating out flavors [1].

These higher-derivative terms were calculated in [1] for SU(2) superQCD with nf ≥ 2

fundamental flavors using one-instanton methods. In [6] we computed these terms by

integrating out massive modes at tree-level from an effective superpotential. These super-

potentials are more singular than those normally considered: the potentials derived from

them have cusp-like singularities at their minima. However, these singularities are mild

enough that they unambiguously define the moduli space of vacua, and can be dealt with
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ε

(a):  n=1 (b):  n>1

Figure 1: The effective potential as a function of the meson chiral fields M . The potential is

regular for (a) n = nf − nc − 1 = 1, and singular for (b) n > 1 where the cusp-like singularity can

be smoothed by a regularization parameter ε.

analytically by means of a simple regularization procedure. The intuitive picture [6] is sum-

marized in figure 1. In [7] we also computed such superpotentials for SU(nc) superQCD

with nf = nc + 2.

In this paper we generalize these results, and the results of [1]. In section 2 we first

compute the singular effective superpotentials of Sp(nc) superQCD with matter in the

fundamental representation, then we show that they correctly describe the moduli space

of vacua, are consistent under RG flow to fewer flavors upon turning on masses, and

are consistent solutions to the Konishi anomaly equations [8, 9]. Then, in section 3, we

generalize the results of [1] to Sp(nc) superQCD by expanding the superpotential around

a generic vacuum and integrating out the massive modes of the meson field at tree level to

find new higher-derivative F -terms.

2. Large nf effective superpotentials of Sp(nc) superQCD

2.1 Sp(nc) superQCD for small nf

Consider a four-dimensional N = 1 Sp(nc) supersymmetric gauge theory with 2nf massless

quark chiral fields Qi
a transforming in the fundamental representation, where i = 1, . . . , 2nf

and a = 1, . . . , 2nc are flavor and color indices, respectively. (The number of flavors must

be even for global anomaly cancellation [10].) The anomaly-free global symmetry of the

theory is SU(2nf ) × U(1)R under which the quarks transform as (2nf , (nf − nc − 1)/nf ).

The classical moduli space of vacua is the space of vevs of holomorphic gauge-invariant

chiral fields. For Sp(nc) superQCD these are the anti-symmetric meson fields M̂ [ij] =

Qi
aJ

abQj
b, where Jab is the invariant antisymmetric tensor of Sp(nc). (We distinguish vevs

from operators by hatting operators.) For nf < nc the classical moduli space is the space of

arbitrary meson vevs M ij , while for nf ≥ nc it is the set of all M ij subject to the condition

rank(M) ≤ 2nc, or equivalently

εi1···i2nf
M i1i2 · · ·M i2nc+1i2nc+2 = 0. (2.1)
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Quantum mechanically there is a dynamically generated superpotential [11]

Weff =






(nc + 1 − nf )(Λb0/Pf M)1/(nc+1−nf ), for 0 < nf ≤ nc,

Σ (Pf M − Λb0), for nf = nc + 1,

−(Pf M/Λb0), for nf = nc + 2,

(2.2)

where the Pfaffian is defined as Pf M := εi1···i2nf
M i1i2 · · ·M i2nf −1i2nf =

√
detM , b0 =

3(nc + 1) − nf is the coefficient of the one-loop beta function, Λ is the strong-coupling

scale of the theory, and Σ is a Lagrange multiplier. These superpotentials encode the low

energy behavior of the gauge theory: for nf ≤ nc all the classical flat directions are lifted,

for nf = nc + 1 instantons deform the classical moduli space, while for nf = nc + 2 the

classical moduli space is not modified.

2.2 Superpotentials and classical constraints for large nf

For nf > nc+2 the classical constraints are not modified, though there are new light degrees

of freedom at singular subvarieties of the moduli space when the theory is asymptotically

free, nf < 3nc + 3. These singular subvarieties are commonly refered to as the “origin”

of the moduli space. The only effective superpotential (for points away from the origin)

consistent with holomorphicity, weak-coupling limits, and the global symmetries is [11]

Weff = −n

(
Pf M

Λb0

)1/n

, n := nf − nc − 1 > 1. (2.3)

The fractional power of Pf M implies that the potential derived from this superpotential

has cusp-like singularities at its extrema. We will devote the rest of this section to arguing

that, nevertheless, these singular superpotentials are physically perfectly sensible.

The first thing to check is to see whether these singular superpotentials describe the

moduli space of vacua. Because these superpotentials are singular at their extrema we

cannot just naively extremize them. We get around this problem by first deforming the

superpotentials using some regularizing parameters εij , extremizing them, then taking the

εij → 0 limit at the end. Independent of how the regularizing parameters are sent to

zero, the extrema of the superpotentials must reproduce the classical constraint (2.1). The

superpotentials (2.3) indeed pass this check, as we now show.

We regularize (2.3) by adding a mass term with an invertible antisymmetric mass

matrix εij for the meson fields

W ε
eff := Weff +

1

2
εijM

ij . (2.4)

We have chosen to deform Weff by a linear term in M ij because it is simple, it smooths

the singularity, and it does not dominate at large M , so does not introduce additional

“spurious” extrema. We could have chosen a different deformation. Varying W ε
eff with

respect to Mkl yields the equation of motion

Mkl = −Λ−b0/n(Pf M)1/n(ε−1)kl. (2.5)

– 3 –
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Solving (2.5) for Pf M in terms of εij and substituting back, we obtain

Mkl = −Λ−b0/(nc+1)(Pf ε)1/(nc+1)(ε−1)kl. (2.6)

Multiplying nc + 1 copies of (2.6) together, and contracting the result with εi1...i2nf
, we

arrive at

εi1...i2nf
M i1i2 · · ·M i2nc+1i2nc+2 =

(−1)nc+1

Λb0
εi1...i2nf

(ε−1)i1i2 · · · (ε−1)i2nc+1i2nc+2 Pf ε. (2.7)

The right hand side of the above expression is a polynomial of order n > 0 in the εij .

Therefore, in the εij → 0 limit it vanishes independently of how we take the limit and we

have

εi1...i2Nf
M i1i2 · · ·M i2(Nc+1)−1i2(Nc+1) = 0, (2.8)

which is exactly the classical constraint that we wanted. Furthermore, it is easy to check

that all solutions of the classical constraints can be reached by taking εij → 0 appropriately.

Note that the negative power of Λ appearing in (2.3) is not inconsistent with the weak

coupling limit because the constraint equation (2.8) which follows from extremizing the

singular superpotential implies that Pf M = 0, thus Weff vanishes on the moduli space for

any finite value of Λ as well as in the Λ → 0 limit.

We present another way of seeing how the classical constraints emerge from the singular

superpotential which might make it clearer why these superpotentials have unambiguous

extrema. Use the global symmetry to rotate the meson fields into the skew diagonal form

M ij =




M1

M2
. . .

Mnf


 ⊗ iσ2, (2.9)

so the effective superpotential (2.3) becomes Weff = −nΛ−b0/n(
∏

i Mi)
1/n. The equations

of motion which follow from extremizing with respect to the Mi are

M
1
n
−1

i

∏

j 6=i

M
1
n

j = 0. (2.10)

Though these equations are ill-defined if we set any of the Mi = 0, we can probe the solu-

tions by taking limits as some of the Mi approach zero. To test whether there is a limiting

solution where K of the Mi vanish, consider the limit ε → 0 with M1 ∼ εα1 , . . . ,MK ∼ εαK

with αj > 0 to be determined. Note that different non-zero values αj corresponds to dif-

ferent deformations in (2.4). Substituting into (2.10), only the first K equations have

non-trivial limits,

lim
ε→0

ε
1
n (

P
j αj)−αi = 0, i = 1, . . . ,K, (2.11)

giving the system of inequalities nαi <
∑

j αj for i = 1, . . . ,K. These inequalities have

solutions if and only if K > n, implying that rank(M) ≤ 2nc which is precisely the classical

constraint (2.1).
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2.3 Consistency with Konishi anomaly equations: direct description

In the previous section the effective superpotential of the theory was determined by the

global symmetry, weak-coupling limits, and holomorphicity. In this section we use the Kon-

ishi anomaly equations to derive the same superpotentials (2.3). The Konishi anomaly [8, 9]

implies a set of differential equations which the effective superpotential should obey. We

will show, using both the direct description and Seiberg dual description [12, 11] of the

theory, that the solution to the Konishi anomaly equations coincides with our singular

superpotentials. This is a consistency check on these superpotentials.

It has been shown [13] that for a pure superYang-Mills theory with the Sp(nc) gauge

group, the glueball superfield Ŝ = 1
32π2 tr(W αWα) generates all the local gauge-invariant

chiral operators in the chiral ring of the theory. When we add matter multiplets to a

superYang-Mills theory we also need to include local gauge-invariant matter generators.

Following the arguments of [14, 15] it follows that Ŝ and M̂ ij comprise all the local gauge-

invariant chiral generators in the chiral ring. In the chiral ring the Konishi anomaly for a

tree level superpotential Wtree is

〈
∂Wtree

∂Qi
a

Qj
a

〉
= Sδj

i . (2.12)

The above set of equations are perturbatively one-loop exact and do not get non-pertur-

bative corrections. See [16, 6, 7] for discussions on the non-perturbative exactness of the

Konishi anomaly equations.

As our tree level superpotential, we take

Wtree = mij(M̂
ij − M ij). (2.13)

where mij is a Lagrange multiplier enforcing M̂ ij to have M ij as their vevs. It follows from

the form of the above tree-level superpotential and the nature of the Legendre transform [2,

17, 18] that

mij = −1

2

∂Weff

∂M ij
. (2.14)

Substituting (2.13) into (2.12) and using the fact that the expectation value of a product

of gauge-invariant chiral operators equals the product of the expectation values, gives

2mikM
kj = Sδj

i . Using (2.14) we then obtain a set of partial differential equations for the

effective superpotential
∂Weff

∂M ik
Mkj = Sδj

i , (2.15)

whose solution is

Weff(M,S) = S ln

(
Pf M

Λnf

)
+ f(S), (2.16)

where the stong-coupling scale of the theory Λ has been inserted to make the quantity

inside logarithm dimensionless. The function f(S) is determined by the U(1)R symmetry

to be

f(S) = −nS
[
ln(S/Λ3) − 1

]
. (2.17)
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(The constant term in the brackets, which can be absorbed in a re-definition of Λ, was

determined by matching to the traditional normalization of the Veneziano-Yankielowicz

superpotential [19] after giving masses and integrating out all the quarks.)

The glueball S is massive away from the origin so can be integrated out. Substitut-

ing (2.17) into (2.16) and integrating S out by solving its equation of motion, we arrive at

the effective superpotentials (2.3).

2.4 Consistency with Konishi anomaly equations: Seiberg dual description

In this subsection we use the Konishi anomaly approach for the dual description as well

as the Seiberg duality dictionary to rederive once again our singular effective superpoten-

tials. For nf > nc + 2 the theory has a Seiberg dual description as an Sp(nf − nc − 2)

supersymmetric gauge theory [11] with 2nf (dual) quark chiral fields qa
i , i = 1 . . . 2nf , in

the fundamental representation and a gauge-singlet elementary field M̂[ij] coupled to the

(dual) meson fields N̂ij := qa
i Jabq

b
j through the superpotential W = N̂ijM̂ij . The dual

description is IR free when nf < 3
2 (nc + 2).

The ring of local gauge-invariant chiral operators for the dual theory is generated by

the dual glueball superfield Ŝ, M̂ij and N̂ij. As our tree level superpotential we take

Wtree = N̂ijM̂ij + mij(M̂ij −Mij), (2.18)

where mij = −1
2(∂Weff/∂Mij) is the Lagrange multiplier associated with the dual descrip-

tion (not to be confused with Lagrange multiplier of the direct description). It imposes

the constraint that M̂ij have Mij as their vevs. The superpotential W = N̂ijM̂ij gives

masses to the dual quarks and sets Nij = 0 when Mij 6= 0, which is why we have not

included Lagrange multipliers for the dual mesons N̂ij.

The Konishi anomaly equations for a tree level superpotential in the dual theory is

〈(∂Wtree/∂qa
i )qa

j 〉 = Sδi
j . Substituting (2.18) gives 2MikNkj = −Sδi

j . Using the M̂ij

equation of motion, Nij = −mij, we can eliminate Nkj and arrive at

Mik ∂Weff

∂Mkj
= Sδi

j, (2.19)

whose solution is

Weff(M, S) = S ln

(
Pf M
Λ̃nf

)
+ g(S), (2.20)

where Λ̃ is the strong-coupling scale of the dual theory. g(S) is determined as before to be

g(S) = −nS[ln(S/Λ̃3)− 1]. Integrating out S then gives the effective superpotential in the

dual description

Weff = n
(
Λ̃3n−nf Pf M

)1/n
. (2.21)

The dual and the direct theories describe the same physics in the IR regime. Both

theories have the same global symmetries and, away from the origin, they have the same

moduli space and the same light degrees of freedom. They should also have the same

effective superpotentials. Thus, relabeling (2.21) in terms of the direct theory degrees of

freedom, we should recover the singular superpotential of the direct theory. In fact, using

– 6 –
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the Seiberg duality dictionary, the Mij are identified with the direct theory mesons through

Mij = 1
µM ij, where µ is a mass scale related to the dual and the direct theory scales by

Λ3(nc+1)−nf Λ̃3n−nf = (−1)nµnf . (2.22)

Using this, upon rewriting (2.21) in terms of Λ and M ij we indeed find the direct theory

superpotential (2.3).

2.5 Consistency upon integrating out flavors

Besides correctly describing the moduli space, the effective superpotentials should also pass

some other tests. If we add a mass term for one flavor in the superpotentials of a theory

with nf flavors and then integrate it out, we should recover the superpotential of the theory

with nf −1 flavors. To show that the effective superpotential (2.3) passes this test, we add

a gauge-invariant mass term for one flavor, say M2nf−1 2nf ,

Weff = −nΛ−b0/n(Pf M)1/n + mM2nf−1 2nf . (2.23)

The equations of motion for M i 2nf−1 and M j 2nf (i 6= 2nf − 1 and j 6= 2nf ) put the

meson matrix into the form M ij =
(cM 0
0 bX

)
where M̂ is a 2(nf −1)×2(nf −1) and X̂ a 2×2

matrix. Integrating out X̂ ∼ M2nf−1 2nf by its equation of motion gives

Weff = −(n − 1)Λ̂b0/(n−1)(Pf M̂)1/(n−1), (2.24)

where Λ̂ = mΛ3(nc+1)−nf is the strong-coupling scale of the theory with nf − 1 flavors,

consistent with matching the RG flow of couplings at the scale m. Dropping the hats, we

recognize (2.24) as the effective superpotentials of Sp(nc) superQCD with nf − 1 flavors.

3. Higher-derivative F-terms in Sp(nc) superQCD

So far we have seen that our singular effective superpotentials (2.3) correctly describe the

moduli space of vacua. In this section we will use these superpotentials to derive the form

of certain higher-derivative F -terms in these theories. This derivation can be taken as

a prediction for the result of instanton calculations in the Sp(nc) superQCD with large

number of flavors.

In [1] Beasley and Witten showed that on the moduli space of SU(2) superQCD with

nf ≥ 2, instantons generate a series of higher-derivative F -terms (also called multi-fermion

F -terms). As F -terms they are protected by non-renormalization theorems, and so should

be generated at tree level in perturbation theory from an exact low energy effective super-

potential. Indeed, they also calculated these F -terms by integrating out massive modes

at tree level from the non-singular effective superpotentials of SU(2) supersymmetic QCD

with nf = 2 and 3 flavors. In [6], it was shown that singular effective superpotentials of

SU(2) supersymmetic QCD can reproduce the corresponding F -terms for nf > 3, as well.

We will show in this section that the singular superpotentials of Sp(nc) superQCD (2.3)

likewise generate higher-derivative F -terms by a tree-level calculation. As in our discussion

– 7 –
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of the classical constraints in the last section, the key point in this calculation is to first

regularize the effective superpotentials (2.3), and then show that the results are independent

of the regularization.

The SU(2) F -terms of [1] have the form

δS =

∫
d4x d2θ Λ6−nf (MM)−nf εi1j1···inf

jnf M i1j1

× (Mk2`2DM i2k2 · DM j2`2) · · · (Mknf
`nf DM inf

knf
· DM jnf

`nf
), (3.1)

where (MM ) := (1/2)
∑

ij M ijM ij, and the dot denotes contraction of the spinor indices

on the covariant derivatives Dα̇. Although these terms are written in terms of the uncon-

strained meson field, they are to be understood as being evaluated on the classical moduli

space. In other words, we should expand the M ij in (3.1) about a given point on the mod-

uli space, satisfying εi1···i2nf
M i1i2 · · ·M i2nc+1i2nc+2 = 0, and keep only the massless modes

(i.e. those tangent to the moduli space). We will refer to such terms as being “on vacuum”

(in analogy to states being on mass-shell). They should be contrasted with our effective

superpotentials (2.3) which are “off vacuum”.

Even though (3.1) is written as an integral over a chiral half of superspace, it is not

obvious that the integrand is a chiral superfield. But the form of the integrand is special:

it is in fact chiral, and cannot be written as D
2
(something), at least globally on the moduli

space, and so is a protected term in the low energy effective action [1].

3.1 Sp(nc) F-terms

To derive on-vacuum effective interactions from an off-vacuum term, we simply have to

expand around a given point on the moduli space and integrate out the massive modes at

tree level; see figure 2. The only technical complication is that the effective superpotential

needs to be regularized first, e.g. by turning on a small mass parameter εij as in (2.4), so

that it is smooth at its extrema. At the end, we take εij → 0. The absence of divergences as

εij → 0 is another check of the consistency of our singular effective superpotentials. What

we will actually compute is just the leading F -term in an expansion around a generic point

on the vacuum in terms of the massless modes of the meson (those tangent to the moduli

space).

Figure 2: The massless tangent modes Mau (red arrow), and the massive transverse modes Muv

(blue arrow) after the meson field Mij has been expanded around a given point on the moduli space.

– 8 –
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As mentioned in section 2, the moduli space of vacua for Sp(nc) superQCD with

nf ≥ nc + 2 flavors is given by the constraint

rank(M ij) ≤ 2nc. (3.2)

At a generic point on the moduli space, the vev of the meson field M0
ij = 〈M ij〉 breaks

the SU(2nf ) flavor symmetry. We can use flavor rotations to bring the generic vev into the

form

M0
ij =

(
µab

0

)
, (3.3)

where µab = µInc ⊗ iσ2 is a skew-diagonalized antisymmetric matrix and µ is a complex

parameter. Note that the above form for M0
ij breaks the SU(2nf ) flavor symmetry to

Sp(2nc)× SU(2nf − 2nc). Accordingly, we partition the i, j, . . . flavor indices into two sets:

Sp(2nc) indices a, b, . . . ∈ {1, . . . , 2nc} from the front of the alphabet, and SU(2nf − 2nc)

indices u, v, . . . ∈ {1, . . . , 2nf−2nc} from the back. Linearizing the meson field around (3.3),

M ij = M0
ij + δM ij, subject to the constraint (3.2), implies that the massless modes are

δMab and δMau, while the δMuv are all massive, as in figure 2. The δMab modes can be

absorbed in a change of µ, so we only need to focus on the δMau modes.

We will find that the leading F -term has the form

δS ∼
∫

d4x d2θ λ−n(µµ)−nf Pf(µ) εu1v1···un+1vn+1 (µc1d1DδM c1u1 · DδMd1v1) ×

· · · × (µcn+1dn+1DδM cn+1un+1 · DδMdn+1vn+1), (3.4)

where we have defined

n := nf − nc − 1, and λ := Λ−b0/n = Λ(nf−3nc−3)/n. (3.5)

Supersymmetry together with the flavor symmetry then uniquely determine the completion

of this leading order term to all orders to be

δS =

∫
d4x d2θ Λ3nc+3−nf (MM)−nf εi1j1···inf

jnf M i1j1 · · ·M inc jnc
(3.6)

×(Mknc+1`nc+1DM inc+1knc+1 · DM jnc+1`nc+1) · · · (Mknf
`nf DM inf

knf
· DM jnf

`nf
).

This follows by an identical argument to one in [1]. Indeed, (3.6) is a straightforward

generalization of (3.1) and has many similar properties, including that it is an F -term

globally on the moduli space.

To generate the leading term (3.4), we first regularize Weff → W ε
eff = −nλ(Pf M)1/n +

1
2εijM

ij, and choose εij = λε1/nµ2/ndiag{ε, 1, . . . , 1} ⊗ iσ2 so that

(M ε
0 )ij =

(
µab

εuv

)
, (3.7)

where εuv = εInf−nc ⊗ iσ2 is a 2(nf − nc) × 2(nf − nc) skew-diagonalized matrix. An

advantage of this choice is that it preserves an Sp(2nc) × Sp(2nf − 2nc) subgroup of the

flavor symmetry. In the ε → 0 limi, this symmetry is enhanced to Sp(2nc)×SU(2nf −2nc).

Also, the massless directions around this choice of (M ε
0 )ij are still δMua as before.

– 9 –
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3.2 Feynman rules

We use standard superspace Feynman rules [20] to compute the effective action for the

massless δMua modes by integrating out the massive δMuv modes. This means we need to

evaluate connected tree diagrams at zero momentum with internal massive propagators and

external massless legs. In order to evalute these diagrams for the theory under discussion,

we closely follow [6] where the superspace Feynman rules for SU(2) superQCD have been

explained in detail. Generalizing these rules for Sp(nc) superQCD is easy: the massive

modes will have standard chiral, anti-chiral, and mixed superspace propagators with masses

derived from the quadratic terms in the expansion of W ε
eff , while higher-order terms in the

expansion give chiral and anti-chiral vertices.

A quadratic term in the superpotential, W = 1
2m(δM )2, gives a mass which enters

the chiral propagator as 〈δMδM 〉 = m(p2 + |m|2)−1(D2/p2), similarly for the anti-chiral

propagator, and as 〈δMδM 〉 = (p2 + |m|2)−1 for the mixed propagator. Each propagator

comes with a factor of δ4(θ − θ′). Even though the diagrams will be evaluated at zero mo-

mentum, we must keep the p2-dependence in the above propagators for two reasons. First,

there are spurious poles at p2 = 0 in the (anti-)chiral propagators which will always cancel

against momentum dependence in the numerator coming from D
2
’s in the propagators and

D2’s in the vertices. For instance, D2D
2

= p2 when acting on an anti-chiral field, giving a

factor of p2 in the numerator which can cancel that in the denominator of the anti-chiral

propagator, to give an IR-finite answer. Second, expanding the IR-finite parts in a power

series in p2 around p2 = 0 can give potential higher-derivative terms in the effective action,

when p2’s act on the external background fields. Expanding W ε
eff around (M ε

0 )ij gives the

quadratic terms

W ε
eff(M ε

0 + δM) = W ε
eff(M ε

0 ) + λ (t2)
ijk`
i′j′k′`′ (Pf M ε

0 )1/n(M ε
0 )−1

ij (M ε
0 )−1

k` δM i′j′δMk′`′ + · · · ,
(3.8)

where the numerical tensor (t2)
ijk`
i′j′k′`′ controls how the ij . . . indices are contracted with

the i′j′ . . . indices. We will drop this tensor for now, though its form will be needed for a

later argument. For our immediate purposes it suffices to note that in the ε → 0 limit the

tensor structure of our tree diagrams is fixed by the Sp(2nc) × SU(2nf − 2) subgroup of

the global symmetry that is preserved by the vacuum.

Specializing to the massive modes, for which {i, j, k, `} → {u, v,w, x}, and using (3.7)

then gives the mass m ∼ λε−αµβ, where

α :=
n − 1

n
, β :=

nc

n
. (3.9)

The propagators are then

δMuv – – – – δMwx ∼ εα

λµβ

D2

p2

(
1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1

,

δMuv ———– δMwx ∼ εα

λµβ

D
2

p2

(
1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1

,
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δMuv —– – – δMwx ∼
∣∣∣∣

εα

λµβ

∣∣∣∣
2
(

1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1

, (3.10)

where have suppressed the tensor structures on the {u, v,w, x} indices.

The (anti-)chiral vertices come from higher-order terms in the expansion of W ε
eff (W ε

eff ).

Each (anti-)chiral vertex will have a D
2

(D2) acting on all but one of its internal legs. Also,

each vertex is accompanied by an
∫

d4θ. The `th-order term in the expansion of W ε
eff has

the general structure

λ (t`)
i1j1···i`j`

i′1j′1···i
′

`
j′
`

(Pf M ε
0 )1/n(M ε

0 )−1
i1j1

· · · (M ε
0 )−1

i`j`
δM i′1j′1 · · · δM i′

`
j′
`, (3.11)

where the numerical tensor (t`)
i1j1···i`j`

i′1j′1···i
′

`
j′
`

controls how the i1j1 · · · i`j` indices are contracted

with the i′1j
′
1 · · · i′`j′` indices. Thus vertices with m massless legs and `−m massive legs are

accompanied by the factors

m massless︷ ︸︸ ︷

︸ ︷︷ ︸
`−m massive

∼ λ

εγ`,mµκm
,

m massless︷ ︸︸ ︷

︸ ︷︷ ︸
`−m massive

∼ λ

εγ`,mµκm
, (3.12)

where

γ`,m := ` − m

2
− n + 1

n
, κm :=

m

2
− nc

n
. (3.13)

Note that it follows from (3.11) that the number, m, of massless legs δMau must be

even. This is because these legs each have one index a ∈ {1, 2, . . . 2nc} and the only non-

vanishing components of (M ε
0 )−1

ij with indices in this range are (M ε
0 )−1

ab = −(M ε
0 )−1

ba =

µ−1. Finally, to each (anti-)chiral external leg at zero momentum is assigned a factor

of the (anti-)chiral background field δMau(x, θ) (δM
au

(x, θ)) all at the same x. Overall

momentum conservation means that the diagram has a factor of
∫

d4x. The δ4(θ − θ′) for

each internal propagator together with the
∫

d4θ integrals at each vertex leave just one

overall
∫

d4θ for the diagram.

Before going on to the cases where the effective superpotentials are singular, we start

by first looking at the nf = nc + 1 and nf = nc + 2 cases. These cases have regular

superpotentials and are simple enough to show the details of the calculations. Although

the superpotentials are regular in these cases we nevertheless expand them around the

modified vacuum (3.7), and then take the limit ε → 0 at the end. The purpose of doing

the calculations around M ε
0 (rather than M0) is to familiarize the reader with how the

calculations will be implemented for singular superpotentials where expanding around the

modified vacuum is necessary.

3.3 nf = nc + 1

This case is special since the superpotential is of a different form (2.2), involving the

Lagrange multiplier field Σ. Expanding (2.2) around M ε
0 , we have

W ε
eff = [Pf M ε

0 − Λ2(nc+1)] δΣ + [(Pf M ε
0 )(M ε

0 )−1
ji ] δM ijδΣ

– 11 –
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+ (Pf M ε
0 )

[
(M ε

0 )−1
`k (M ε

0 )−1
ji + (M ε

0 )−1
j` (M ε

0 )−1
ki

+ (M ε
0 )−1

jk (M ε
0 )−1

i`

]
δM ijδMk`δΣ + · · ·

= [Pf M ε
0 − Λ2(nc+1)] δΣ − µncεuv δMuvδΣ − µnc−1εuvJab δMauδM bvδΣ + · · · ,

where we have just expressed the terms which are relevant in re-

Figure 3: The diagram

reproducing the F -term

for nf = nc + 1 flavors.

producing the multi-fermion F -term for nf = nc + 1. Since the

superpotential includes the additional field Σ, we cannot use the

coefficients for various superspace Feynman diagrams as expressed

in (3.10) and (3.13). Instead, reading the appropriate terms off the

W ε
eff expansion, the propagator between δΣ and δMuv is accom-

panied by a factor of εuv/[p2 + (µµ)nc ], a vertex of δMauδM bvδΣ

comes with a factor of εuvJabµnc−1, and the δΣ vertex with a fac-

tor of (Pf M ε
0 − Λ2(nc+1)). Evaluating the diagram in figure 3, we

have

δS ∼
∫

d4x d4θ

(
Pf M ε

0 − Λ2(nc+1)

µµnc−1

)
εuvJab δMau · δM bv. (3.14)

In the ε → 0 limit, Pf M ε
0 vanishes leaving us with

δS ∼
∫

d4x d2θ
1

µµnc−1
εuvJab (DδMau · DδM bv), (3.15)

where we have traded a
∫

d2θ for a D
2

and used the equation of motion D
2
δM = 0 to

leading order in δM to distribute the D’s amongst δM ’s. The above expression for δS is

the higher-derivative F -term for nf = nc + 1.

3.4 nf = nc + 2

In order to reproduce the F -term for nf = nc + 2 flavors we

Figure 4: Diagrams with

four massless external anti-

chiral legs for nf = nc + 2.

(a) The amputated 4-vertex

which does not have the right

structure. (b) This diagram

reproduces the multi-fermion

F-term.

need four massless anti-chiral legs. There are only two such

diagrams, shown in figure 4. Diagram (a) with an amputated

4-vertex (m = l = 4) does not have the right structure to be

an F -term because, in the ε → 0 limit, it contributes to the

action the term
∫

d4x d4θ
λ

µ2−nc
Aabcd

a′b′c′d′ εuvwxJa′b′Jc′d′

× δMauδM bvδM cwδMdx, (3.16)

where Aabcd
a′b′c′d′ is a non-vanishing tensor which determines

how ab · · · indices are contracted with a′b′ · · · indices. Even

if we traded a
∫

d2θ for a D
2

and distributed the D’s among

δMau’s, we would still need another D
2
. Also, the coefficient

in the integrand of (3.16) does not match that of (3.4) for

nf = nc + 2. This term is probably just a correction to the Kähler potential, though we

have not ruled out the possibility that it is a new global F -term different from (3.6).
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Diagram (b) consists of two external anti-chiral vertices and one anti-chiral propagator,

and gives

δS ∼
∫

d4x d4θ1d
4θ2 δMau(θ1)δM bv(θ1)J

ab(JusJvt − JutJvs)
λ

εγ3,2µκ2

× δ4(θ1 − θ2)(JspJtq − JsqJtp)
εα

λµβ

D
2

p2

(
1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1

× λ

εγ3,2µκ2
(JwpJxq − JwqJxp)Jcd δM cw(θ2)δMdx(θ2). (3.17)

Using the values α = 0, β = nc, γ3,2 = 0 and κ2 = 1− nc, and substituting them in (3.17),

we obtain

δS ∼
∫

d4x d4θ δMauδM bv
λ

µ2−nc

D
2

p2

[
1 − |λµnc |−2p2 + O(p4)

]
δM cwδMdx

=
λ

µ2−nc
εuvwxJabJcd

∫
d4x d2θ δMauδM bv

D2D
2

p2
(δM cwδMdx)

− εuvwxJabJcd

λµncµ2

∫
d4x d2θ D

2
[
δMauδM bvD

2
(δM cwδMdx)

]
+ O(p2)

=
λ

µ2−nc
εuvwx

∫
d4x d2θ δMauδM bvδM cwδMdx

− εuvwx

λµncµ2

∫
d4x d2θ (DδMau · DδM bv)(DδM cw · DδMdx) + O(p2), (3.18)

where in the second line in (3.18) we have traded an
∫

d2θ for a D2 and used the identity

D2D
2

= p2 on antichiral fields to cancel the IR pole. We then traded an
∫

d2θ for a D
2

in

the third line and used the equation of motion D
2
δM = O(δM) to distribute the D’s in

the fifth line. In the last two lines, the first term in the expansion does not have the right

structure the multi-fermion F -term, but the second term is, up to some numerical factor,

the multi-fermion F -term in (3.4) for nf = nc + 2. All other diagrams in the expansion

vanish in the limit p → 0.

3.5 nf = nc + 3

This is the first case where we have a singular superpotential. The F -term for nf = nc + 3

has six external anti-chiral massless legs so we have to look for those Feynman diagrams

with only six external anti-chiral legs. There are five different possibilities (plus their

crossed-channels), see figure 5. Among these diagrams, The four diagrams in figure 5(a)

either do not have the right structure to be a multi-fermion F -term, or have zero coefficient.

For example, the second graph from the left in figure 5(a) comes with zero coefficient

because it has vertices with an odd number of massless legs. The rest of diagrams in

figure 5(a) are probably corrections to the Kähler term, though we have not ruled out the

possibility that some of them might contribute to new classes of global F -terms different

from (3.6).
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Figure 5: Diagrams with six massless external anti-chiral legs for nf = nc +3. (a) Diagrams which

do not have the right structure. (b) The only diagram contributing to the F -term (3.4).

The only diagram with the right structure is 5(b): three external anti-chiral vertices

with one chiral internal vertex. Evaluating this diagram gives

δS ∼
∫

d4x d4 θBuvwxyz
u′v′w′x′y′z′J

u′v′Jw′x′

Jy′z′JabδMauδM bv
λ

εγ3,2µκ2

∣∣∣∣
εα

λµβ

∣∣∣∣
2
(

1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1

× λ

εγ3,0µκ0

∣∣∣∣
εα

λµβ

∣∣∣∣
2
(

1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1
λ

εγ3,2µκ2
Jcd D

2
(δM cwδMdx)

×
∣∣∣∣

εα

λµβ

∣∣∣∣
2
(

1 +

∣∣∣∣
εα

λµβ

∣∣∣∣
2

p2

)−1
λ

εγ3,2µκ2
Jef D

2
(δM eyδM fz), (3.19)

with Buvwxyz
u′v′w′x′y′z′ being a tensor contracting uv · · · indices to u′v′ · · · indices. Substituting

the values α = 1
2 , β = nc

2 , κ0 = −nc

2 , κ2 = 1 − nc

2 , γ3,0 = 3
2 and γ3,2 = 1

2 into (3.19) and

taking the limit ε → 0, we obtain

δS ∼
∫

d4x d2θ
εuvwxyz

λ2µ3µnc
JabJcdJef (DδMau · DδM bv)

(DδM cw · DδMdx)(DδM ey · DδM fz), (3.20)

where we have used the fact that in the ε → 0 limit the flavor symmetry group is enhanced

to Sp(2nc)×SU(2nf −2nc). This expression coincides with (3.4) for nf = nc+3. Since this

was the only diagram contributing in the nf = nc + 3 case, there can be no cancellation of

its coefficient. This shows that the nf = nc + 3 singular superpotential indeed reproduces

the corresponding higher-derivative global F-term in perturbation theory.

3.6 nf ≥ nc + 4

As we go higher in the number of flavors, however, the number of diagrams contributing to

each amplitude rapidly increases. For instance, just among the class of internally purely-

chiral diagrams illustrated in figure 6, there are are four superspace Feynman diagrams in

the case of nf = nc + 4 flavors each with the right structure to contribute to (3.4). But

since now multiple diagrams contribute, we must show in addition that no cancellations

occur that could set the coefficient of the higher-derivative term to zero. This seems quite

complicated, as it depends on the signs and tensor structures of the vertices. Some sort of

symmetry argument is clearly wanted, but still eludes us.
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Figure 6: Diagrams which have the right structure to give a higher-derivative F -term for nf =

nc + 4.

In addition, there are now also other classes of diagrams which are neither purely anti-

chiral (as in figure 5(a)) or internally purely chiral (as in figure 6). It is not clear whether

these mixed diagrams will also contribute to higher-derivative amplitudes of the form (3.4)

or not.
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